skip to main content


Search for: All records

Creators/Authors contains: "Katuka, Gloria Ashiya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As conversational AI apps such as Siri and Alexa become ubiquitous among children, the CS education community has begun leveraging this popularity as a potential opportunity to attract young learners to AI, CS, and STEM learning. However, teaching conversational AI to K-12 learners remains challenging and unexplored due in part to the abstract and complex nature of some conversational AI concepts, such as intents and training phrases. One promising approach to teaching complex topics in engaging ways is through unplugged activities, which have been shown to be highly effective in fostering CS conceptual understanding without using computers. Research efforts are underway toward developing unplugged activities for teaching AI, but few thus far have focused on conversational AI. This experience report describes the design and iterative refinement of a series of novel unplugged activities for a conversational AI summer camp for middle school learners. We discuss learner responses and lessons learned through our implementation of these unplugged activities. Our hope is that these insights support CS education researchers in making conversational AI learning more engaging and accessible to all learners. 
    more » « less
    Free, publicly-accessible full text available March 7, 2025
  2. With the increasing prevalence of large language models (LLMs) such as ChatGPT, there is a growing need to integrate natural language processing (NLP) into K-12 education to better prepare young learners for the future AI landscape. NLP, a sub-field of AI that serves as the foundation of LLMs and many advanced AI applications, holds the potential to enrich learning in core subjects in K-12 classrooms. In this experience report, we present our efforts to integrate NLP into science classrooms with 98 middle school students across two US states, aiming to increase students’ experience and engagement with NLP models through textual data analyses and visualizations. We designed learning activities, developed an NLP-based interactive visualization platform, and facilitated classroom learning in close collaboration with middle school science teachers. This experience report aims to contribute to the growing body of work on integrating NLP into K-12 education by providing insights and practical guidelines for practitioners, researchers, and curriculum designers. 
    more » « less
    Free, publicly-accessible full text available March 7, 2025
  3. Conversational AIs such as Alexa and ChatGPT are increasingly ubiquitous in young people’s lives, but these young users are often not afforded the opportunity to learn about the inner workings of these technologies. One of the most powerful ways to foster this learning is to empower youth to create AI that is personally and socially meaningful to them. We have built a novel development environment, AMBY–‘‘AI Made By You’’–for youth to create conversational agents. AMBY was iteratively designed with and for youth aged 12–13 through contextual inquiry and usability studies. AMBY is designed to foster AI learning with features that enable users to generate training datasets and visualize conversational flow. We report on results from a two-week summer camp deployment, and contribute design implications for conversational AI authoring tools that empower AI learning for youth. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Co-creative proccesses between people can be characterized by rich dialogue that carries each person's ideas into the collaborative space. When people co-create an artifact that is both technical and aesthetic, their dialogue reflects the interplay between these two dimensions. However, the dialogue mechanisms that express this interplay and the extent to which they are related to outcomes, such as peer satisfaction, are not well understood. This paper reports on a study of 68 high school learner dyads' textual dialogues as they create music by writing code together in a digital learning environment for musical remixing. We report on a novel dialogue taxonomy built to capture the technical and aesthetic dimensions of learners' collaborative dialogues. We identified dialogue act n-grams (sequences of length 1, 2, or 3) that are present within the corpus and discovered five significant n-gram predictors for whether a learner felt satisfied with their partner during the collaboration. The learner was more likely to report higher satisfaction with their partner when the learner frequently acknowledges their partner, exchanges positive feedback with their partner, and their partner proposes an idea and elaborates on the idea. In contrast, the learner is more likely to report lower satisfaction with their partner when the learner frequently accepts back-to-back proposals from their partner and when the partner responds to the learner's statements with positive feedback. This work advances understanding of collaborative dialogue within co-creative domains and suggests dialogue strategies that may be helpful to foster co-creativity as learners collaborate to produce a creative artifact. The findings also suggest important areas of focus for intelligent or adaptive systems that aim to support learners during the co-creative process. 
    more » « less
  5. null (Ed.)